
JavaScript!

What is JavaScript?

• A (traditionally) client-side scripting language

• Meant (traditionally) to run entirely on the user’s browser

• Defined by the ECMAscript standard, published by the
ECMA foundation

• JavaScript != Java, they are completely unrelated
languages

What is it used for?
• In the context of web browsers, JS allows you to interact with

the DOM (Document Object Model), so you can do things like:

• Show and hide elements

• Animate elements

• Replace elements with other elements

• Make requests to the server without reloading the page

• The DOM is a programmatic representation of all of the HTML
elements on the web page.

What are the JS Data
Types?

JS Data Types
• Primitives:

• String e.g. “This is a string”

• Number e.g. 12 / Infinity / 3.14 *all numbers in JS are floats

• Boolean => true / false

• null

• undefined

• Symbol

• Object e.g. {key: value} / [1, 2, 3] / function() {}

null vs. undefined

• undefined typically means that a variable has been
declared but has not yet been signed to a value.

• Functions that do not explicitly return a value will also
implicitly return undefined.

• null is an assignment value. It is generally used to
represent the intentional absence of any object value.

typeof operator

• The typeof operator is used to check the data type of a
particular value. The result will be a string representing
the data type of what is passed to it, for example:

• typeof 2 === ‘number’

• typeof ‘Jon’ === ‘string’

JS quirk: Type Coercion

Type coercion is the process of (implicitly or explicitly)
converting a value from one type to another. Since JS is a
weakly-typed language, type coercion can be intentional
(explicit) or situational (implicit) What does this look like?

JS quirk: Type Coercion

Implicit Coercion Pop Quiz

• 2 + 2 = ?

• 2 +‘2’ = ?

• ‘2’+ 2 = ?

• ‘2’- 2 = ?

JS quirk: Type Coercion
• 2 + 2 = 4

• No type coercion because data types match as numbers

• 2 +‘2’ = 4

• ‘2’+ 2 = ’22’

• ‘+’ is treated as ‘concat’ string operator because one of the values
is typeof ‘string’

• ‘2’- 2 = 0

• ‘-‘ coerces the string ‘2’ to a number to properly use the subtraction
operator.

JS quirk: Type Coercion

For an interesting look at how ‘==‘ can lead to some weird
and unexpected coercion results, check out this link:

https://dorey.github.io/JavaScript-Equality-Table/

https://dorey.github.io/JavaScript-Equality-Table/

What are the six
falsey values in JS?

Six falsey values
Using any of the following values with ‘!!’ operator, Boolean(value)

function, or in a conditional block will coerce them to false:

• 0 (zero)

• ‘’ (empty string, no whitespace)

• null

• undefined

• NaN

• false (of course!)

How do we declare
variables in JS?

Variable Declaration
As of ECMAscript 6 (ES6), there a three ways to declare a

variable in JavaScript, each with different mechanics
especially as it pertains to scope:

JS Variables
var

• The original method of declaring a variable in
JavaScript

• Variable names declared in global scope can be
reassigned by other var declarations elsewhere in
your script / project if using the same variable name.

•Only contained by local (functional) scope.

JS Variables
let

• Introduced as a method of declaring variables as of ES6 in
2015

• Variables names declared in global scope CANNOT be
reassigned by other let declarations of the same variable
name in the same scope.

•Maintains block / lexical scope, i.e. if a variable is declared
using let within any type of block (if/else, for loop) it
will not be accessible outside of the block that it is
declared in

JS Variables
const

• Introduced as a method of declaring variables as of
ES6 in 2015

• Variables names declared CANNOT reassigned at all
as they are considered constant variables (hence
const).

•Maintains block / lexical scope as well.

JS Variables
There is a difference between variable declaration and variable

definition:

• Declaration means using one of the variable declaration
keywords (var, let, const) to declare a variable name,
e.g. let x

• Definition means actually assigning a value to the variable that
has been declared, e.g. using the previously declared variable
to set x = 1

• Declaration and definition can, and typically does, happen in
line (let x = 1), however there are plenty of use cases for
declaring a variable that you will assign at a later time.

How do we declare
functions in JS?

JS Functions

Once again, thanks in part to ES6, there are three ways to
declare functions in JS:

• function keyword declaration

• function expression saved in a variable

• ES6 Arrow functions

JS Functions

function

• The most straightforward way to declare functions.

• Using function myFunc(arg){…} to declare the
myFunc function will hoist the definition to the top of your
script.

• function can also be used to declare anonymous
functions (function(arg){…})

JS Functions
Function Expression

• As JS functions are considered first-class functions,
they can be assigned to variables and passed around like
any other data type in JavaScript.

• Declaring functions this way will not hoist the definition to
the top of your script.

• Function expressions have the benefit of allowing a
function to be self-invoking, otherwise known as an
IIFE(immediately invoked function expression).

JS Functions
()=>{}

• Introduced in ES6, Arrow function syntax (aka Fat Arrow functions) are a
new way of creating functions with some special rules

• Arrow functions composed on one line will implicitly return the result of the
operation taking place, however multi-line statements will still need to be
wrapped in brackets and the return keyword is required to share any
information.

• Most importantly, the Arrow functions do not create their own this context,
instead inheriting this from the lexical scope in which they are created,
and will go up in scope until a context is found.

• Because of this rules with Arrow functions, they are better suited for non-
method functions and cannot be used inside of constructors.

Arrays and Objects

Arrays

• Arrays are used to hold a collection of data, and can
consist of any multiples of any data type, like so:

 [“string”, 11, [2, 3], {key: value}]

• Arrays can also be stored in variables, as well.

Arrays
• Once you’ve declared an array, you may want to retrieve

the items inside of it using their indices.

• Arrays are zero-indexed, and an array element’s index
corresponds to its position from the beginning of the
array.

 const cars = [“Porsche”, [“Camry”]

• In order to access “Porsche” in the cars array, you would
do so by targeting the index of the value that you want
from the array: cars[0] //“Porsche”

Arrays

• Arrays that hold other arrays are called multi-dimensional
arrays.

 const cars = [[“Porsche”, “Camaro”], [“Camry”,”Prius”]]

• To target the value “Prius”, you would target the index of
the inner array AT the index of the outer array like so:

 cars[1][1] // “Prius"

Objects

• A way of organizing data using key/value pairs.

 const car = { make: “Toyota”, model: “Matrix”}

• Similar to arrays, you can access information using bracket
notation, only what is in the bracket is the key that you wish to
target.

 car[‘make’] // “Toyota”

Objects

• You can also use “dot notation” to get data out of an
object.

 const user = { firstName: “Lucille”, lastName: “Bluth”}

 user.firstName // “Lucille”

Destructuring

• New syntax introduced as of ES6, destructuring allows
you to break an array into it’s elements without mutating
the original array, for example

const arr = [1, 2, 3]

const [a, b, c] = arr

console.log(a, b, c) // 1, 2, 3

Destructuring

• Similar functionality exists for objects, using the key as a
variable name to access the value at that key, for
example:

const obj = {firstName: ‘Jon’, favColor: ‘blue’}

const {firstName, favColor} = obj

console.log(firstName,favColor) // ‘Jon’, ‘blue'

